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Abstract In this paper we continue the program started in Hwang and Velázquez
(J Math Chem, to appear). We describe some chemical systems exhibiting bistable
behavior with reaction constants of order one, but where bistability is due to the
presence of a large number of chemical species or a large number of molecules of
some of the species. We derive generalizations of the classical Kramers’ formula that
gives the switching times for some particular systems exhibiting a large number of
species.
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1 Introduction

This paper, together with its companion paper [33], investigates the mathematical
properties of biochemical systems yielding deterministic behaviour in suitable rescal-
ing limits. More precisely, our goal is to study the underlying mechanisms which can
yield deterministic behaviour in spite of the fact that the system itself could behave
stochastically, due to the smallness of the number of molecules or the large size of the
molecular fluctuations.

As discussed in [33] there exist several biological processes where the stochastic
character of some systems seems to play a relevant role (cf. [5,7,19,24,36,42,46]).
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Biochemical networks with stochastic behaviour have been extensively studied since
the seminal work of Gillespie (cf. [29]). Analytical and computational works can be
found in [21,22,27,28,34,41,49,51,52]. In [33] we have studied the way in which
biochemical networks consisting of a small number of molecules can yield bistable
behaviours with long switching times between the possible stable equilibria due to the
highly specific behaviour of the molecules of the system.

The main difference between the type of biochemical networks considered in this
paper and the ones in [33] is that the source of bistability for the models considered
in this paper will be the presence in the system either of many molecules, or many
chemical species. In particular we will derive a generalization of the well known
Kramers’ formula (cf. [37]) for a class of biochemical networks containing many
chemical species.

The key ingredient for the existence of bistability in the models under consideration
will be the presence in the system of large and small parameters. The large parameters
considered in [33] were the relative sizes between the chemical rate constants associ-
ated to some specific reactions. The parameters in this paper will be, either the number
of molecules or the number of chemical species.

As discussed in [33] it is natural to ask why to compute the switching times between
different multiple states. There are several reasons for studying switching times. First,
they are intrinsically interesting for themselves. On the other hand, their size provides
a measure of how deterministic is the behaviour of a biochemical system, since the
switching times provide an estimate of the time required to switch to another steady
state among the many possible ones of a system. A detailed computation of switching
times in some asymptotic limits can provide insights on the factors (like chemical
coefficients, network structure or others) that can yield more deterministic or more
“random-like” type of behaviours.

The study of the computation on the rates of chemical reactions which take place to
overcome an activation energy has deserved a lot of attention. Usually in these cases the
switching times rescale exponentially with the activation energy. The first results in this
direction were obtained in one-dimensional models by Eyring (cf. [18]) and Kramers
(cf. [37]). Kramers’ formula has been extensively used to compute switching times in
biochemical systems (cf. [20]). A rigorous formulation as well as a generalization of
this approach to finite dimensional systems were obtained in the Freidlin–Wentzell the-
ory (cf [25]). Actually these ideas can be extended to rather general Markov processes.
Several definitions of metastability have been given for such systems as well as exten-
sions of Kramers’ formula to some infinite dimensional systems (cf. [8–11,14–16]).

The applicability of the ideas of metastability and switching times that underly the
theories mentioned above is very wide, since it can be used generally in problems
exhibiting metastable states separated by energy barriers. For instance, these meth-
ods have been applied in [48–51] to describe conformational dynamics as transitions
between metastable states.

It should be pointed out, however, that the usual Kramers’ formula, can be only
applied strictly to the case where the dynamics of the system can be approximated by
means of a Fokker–Planck equation. The master equations describing the number of
molecules in a system can be found in [29] and they are reduced to such type of PDEs
that the number of molecules in the system approaches infinity, as it was shown in [38].
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If the number of molecules remains of order one, the usual Kramers’ formula cannot
be applied and different methods must be used to compute switching times. Although
the mathematical theories required to compute switching times are well established
in the general theory of Markov processes, its specific applications to biochemical
systems seem to pose some interesting questions. For instance, the combinatorics of
the reactions could play a crucial role for large networks.

A large part of the approaches in this paper is based on asymptotic methods. We
will use repeatedly the asymptotic symbols ∼, � to denote the following:

f ∼ g as x → x0 iff lim
x→x0

f (x)

g (x)
= 1

f � g as x → x0 iff lim
x→x0

f (x)

g (x)
= 0

The plan of this paper is the following. In Sect. 2 we briefly describe the class of sto-
chastic biochemical networks that we are considering in this paper. Section 3 revises
some particular problems whose dynamics can be approximated using Fokker–Planck
equations with small parameters where Kramers formula can be used to compute
switching times. In Sect. 4 we introduce a type of systems containing many different
chemical substances and that can yield long switching times under suitable circum-
stances. We remark that the systems considered in Sect. 4 do not produce bistability
due to the presence of nonlinear interactions. On the contrary the bistability is due
to the presence of strong drifting terms that tend to bring the state of the system to
the presence of one type of molecule. The mathematical structure of the systems con-
sidered in Sect. 4 is simple enough to allow a detailed computation of formulas for
the switching times in suitable asymptotic limits. Section 5 considers a system con-
taining also many different chemicals, but also some nonlinear interactions that allow
to obtain a stronger bistable behaviour than the one obtained for the systems consid-
ered in Sect. 4. A closed formula for the invariant measures or the switching times is
more difficult to obtain than in the case of the systems considered in Sect. 4. There-
fore, some numerical simulations showing their behaviour are described in Sect. 6.
Section 7 summarizes the main results obtained in the paper.

2 General framework: discrete stochastic processes

The type of stochastic molecular dynamics considered in this paper is similar to the
one previously considered in the literature (cf. [4,6,13,26,29,38,40,41,45]). We sum-
marize here the main assumptions.

We will assume that the systems under consideration consist of N different types
of chemical substances. It will be also assumed that the number of molecules of each
chemical species is typically a finite number. Such a number is a random variable that
might change in time as a consequence of the chemical reactions. We are interested
in understanding the dynamics of these stochastic systems in suitable limit regimes:
(1) for the number of molecules of some of the chemical species, in the limit of large
numbers of molecules, or (2) for the number of chemical species, in the limit of large
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numbers of species or (3) for suitable choices of large or small coefficients for some
of the reaction rates.

The chemical reactions will be assumed to be due to at most binary collisions
between molecules and with a maximum number of two products in each reaction.
We will not assume that the number of molecules is conserved in the reactions, as it
is common in many of these studies (see for instance [23]). In particular this means
that we will accept the possibility of having reactions not preserving the molecules
like A → ∅ or ∅ → A.We will suppose that in the reactions including the empty set
∅ only one molecule is involved. This does not lose much of the generality because
similar reactions involving more than one molecule could be described by means of
sequences of very fast reactions involving intermediate molecular complexes.

It will be assumed that the environment where the molecules react is well stirred.
Therefore, the spatial dependence of the molecules will be ignored. We will suppose
that the chemical reactions take place according to independent Poisson processes.
Correlation effects between the different reactions will not be taken into account.

The variables needed to describe this type of systems are the number of molecules
of each of the chemical species {n�}N

�=1 . Let us denote as A�, � = 1, . . . , N the
different chemicals in the system. The restrictions imposed on the reactions mean that
they fall into one of the following types:

∅ → A�, K�; A� → ∅, λ� (1)

A� + A j → Ak, α�, j;k ; Ak → A� + A j , βk;�, j (2)

A j → Ak, μ j;k (3)

More general forms for the reactions that include also arbitrary collisions have
been considered for instance in [4]. We consider one specific example in the paper
[33] where one of the reactions contains three molecules on the right hand side. We
have written to the right end of each equation the parameters characterizing the rates of
the chemical reactions for each group of molecules written to the left. More precisely,
if the state of the systems is characterized by the set of numbers {n�}N

�=1 the probability
for unit of time of having each of the five types of reactions in the equations (1)–(3)
is given respectively by the numbers

K�, λ�n�, α�, j;kn�
(
n j − δ�, j

)
, βk;�, j nk, μ j;kn j (4)

where the term δ�, j is just a combinatorial factor that plays a role only if � = j.
The basic function which will be described throughout the paper is the probability
of each of the states of the system and it will be denoted as p

({n�}N
�=1 , t

)
. Notice

that from the mathematical point of view p ∈ C
(
R

+;M1
(
N

N∗
))
, where from now

on N∗ = N ∪ {0} and M1
(
N

N∗
)

is the set of probability measures in N
N∗ . Notice in

particular that this implies p (ξ, t) ≥ 0 for ξ ∈ N
N∗ and

∑
ξ∈N

N∗ p (ξ, t) = 1.
As we indicated in the Introduction we will study in this paper very particular

criteria for deterministic behaviour, namely the existence of long switching times in
molecular systems. In particular, systems that tend to just one equilibrium distribution
will be left completely outside of the consideration in this paper.
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3 Systems with many molecules for some of the species: Kramers’ dynamics

The case in which there are many molecules in the system has been extensively studied
(cf. [6,37,38]). In this case the master equation becomes a Fokker–Planck equation.

We consider a system of reactions in which the number of molecules is very large.
More precisely, let us restrict our attention to the case in which we have a system of
chemical reactions of the form:

Ai + A j � Ak : Ki, j , �k , k = k (i, j)

i, j, k ∈ {1, . . . , L}

There is an easy way of writing a large system of these equations, that is the
following:

L∑

j=1

ν j,�A j � 0, � = 1, . . . ,M

where M is the number of reactions, and the coefficients ν j,� take the values 0,+1, −1.
Let us denote the coefficients for the direct and inverse reaction as K�, �� respectively.
Notice that in principle they depend on the whole distribution of molecules

{
n j

}
.We

will make this dependence explicit by writing K�
[{

n j
}]
, ��

[{
n j

}]
.

Then the set of master equations would have the following form:

∂ f

∂t
(n1, . . . , nL ) = −

∑

�

(
K�

[{
n j

}] + ��
[{

n j
}])

f (n1, . . . , nL ) (5)

+
∑

�

K�
[{

n j + ν j,�
}]

f
(
n1 + ν1,�, . . . , n j + ν j,�, . . . , nL + νL ,�

)

+
∑

�

��
[{

n j − ν j,�
}]

f
(
n1 − ν1,�, . . . , n j − ν j,�, . . . , nL − νL ,�

)

where for simplicity the dependence on time of f is not indicated explicitly. This equa-
tion can be reformulated as a discrete equation resembling a second order differential
equation. To this end, we define a family of fluxes by means of:

J�
({

n j
}) = −K�

[{
n j + ν j,�

}]
f
(
n1 + ν1,�, . . . , n j + ν j,�, . . . , nL + νL ,�

)

+��
[{

n j
}]

f (n1, . . . , nL) (6)

and we define a discrete divergence operator as:

Div (J�) (n1, . . . , nL)

=
∑

�

[
J� (n1, . . . , nL)− J�

(
n1 − ν1,�, . . . , n j − ν j,�, . . . , nL − νL ,�

)]
(7)

Roughly speaking, J� yields the probability flux from the state
{
n j

}
to the state{

n j + ν j,�
}
. The divergence operator measures the probability change at the state
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{
n j

}
to adjacent states due to all the possible fluxes. Using this notation we can write

(5) as;

∂ f

∂t
(n1, . . . , nL)+ Div (J�) = 0 (8)

If the numbers
{
n j

}
are large it is possible to approximate the operator Div in

(7) as well as the formulas for the fluxes J�
({

n j
})

in (6) using differential operators.
More precisely we will write:

Div (J�) (n1, . . . , nL) =
∑

�

∑

j

ν j,�
∂ J�
∂n j

(n1, . . . , nL) (9)

On the other hand, in order to approximate the fluxes J�
({

n j
})

we write:

J�
({

n j
}) = −K�

[{
n j + ν j,�

}]
f
(
n1 + ν1,�, . . . , n j + ν j,�, . . . , nL + νL ,�

)

+K�
[{

n j
}]

f (n1, . . . , nL)

+��
[{

n j
}]

f (n1, . . . , nL)− K�
[{

n j
}]

f (n1, . . . , nL)

and approximate the discrete operators by means of derivatives:

J�
({

n j
}) = −

∑

j

ν j,�
∂

(
K�

[{
n j

}]
f
)

∂n j
(n1, . . . , nL)

+ (
��

[{
n j

}] − K�
[{

n j
}])

f (n1, . . . , nL) (10)

Combining the approximations (9), (10) we then obtain the following PDE approx-
imation for (5):

∂ f

∂t
(n1, . . . , nL ) =

∑

�

∑

j

ν j,�
∂

∂n j

×
⎛

⎝
∑

k

νk,�
∂

(
K�

[{
n j

}]
f
)

∂nk
− (
��

[{
n j

}] − K�
[{

n j
}])

f

⎞

⎠ (n1, . . . , nL )

(11)

It is important to take into account that (11) is in general a degenerate parabolic
equation, due to the fact that the changes of the numbers of

{
n j

}
can take place

only in the stoichiometric hyperplanes. It is also important to mention that the terms
containing second derivatives are smaller if this approximation, that relies on the
fact that Taylor’s series can be used to approximate the different functions, is valid.
The derivation of (11) requires some precise rescaling properties for the chemical
coefficients K�

[{
n j

}]
, ��

[{
n j

}]
in order to apply Taylor’s Theorem neglecting

higher order corrections. We will precise this type of choice in a particular example
later.
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Switching times in some equations with the form of (11) can be computed using
Kramers’ formula (cf. [20,30]). We illustrate this by means of a well known simple
example of chemical reactions yielding bistability (cf. [47]):

2A � 3A, k1, k2

∅ � A, k3, k4

where the constants k1, k3 are the chemical constants associated to the direct reactions
and k2, k4 the ones associated to the reverse reactions respectively. The stochastic
version of this system can be described using the probability of having n molecules
in the system. This probability will be denoted as p (n, t) . The corresponding master
equation is:

∂p (n)

∂t
= − (k1n (n − 1)+ k2n (n − 1) (n − 2)+ k3 + k4n) p (n)

+k1 (n − 1) (n − 2) p (n − 1)+ k2 (n + 1) n (n − 1) p (n + 1)

+k3 p (n − 1)+ k4 (n + 1) p (n + 1)

where the dependence of p on t is assumed but not explicitly written. This equation
can be rewritten as:

∂p (n)

∂t
+ J (n)− J (n − 1) = 0

with:

−J (n) = k2 (n + 1) n (n − 1) p (n + 1)+ k4 (n + 1) p (n + 1)

−k1n (n − 1) p (n)− k3 p (n)

We can rewrite J (n) as:

−J (n) = k2 [(n + 1) n (n − 1) p (n + 1)− n (n − 1) (n − 2) p (n)]

+k4 [(n + 1) p (n + 1)− np (n)]

+ [k2n (n − 1) (n − 2)+ k4n − k1n (n − 1)− k3] p (n)

In order to derive a continuous limit we need to choose the coefficients k1, . . . , k4
and the number of particles rescaling in a suitable way. More precisely, we will obtain
solutions where p can be approximated as:

p (n, t) = f (ξ, t) , ξ = n

N

and where it is assumed that f (ξ, t) converges to a smooth limit function as N → ∞
for ξ of order one. Therefore:

p (n + 1, t) = f

(
ξ + 1

N
, t

)
(12)
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Moreover:

k1 = α1

N
, k2 = α2

N 2 , k3 = α3 N , k4 = α4

We then obtain the following approximations, linearizing in (12) and neglecting
terms that formally converge to zero as N → ∞ :

−J (n) = α2
∂

∂ξ

[
ξ3 f (ξ, t)

]
+ α4

∂

∂ξ
(ξ f (ξ, t))

+N

[
α2ξ

3 + α4ξ − α1ξ
2 − α3 − 3α2ξ

2

N
+ α1ξ

N

]
f (ξ, t)

J (n)− J (n − 1)

= − 1

N

∂2

∂ξ2

((
α2ξ

3 + α4ξ
)

f (ξ, t)
)

− ∂

∂ξ

([
α2ξ

3 + α4ξ − α1ξ
2 − α3 − 3α2ξ

2

N
+ α1ξ

N

]
f (ξ, t)

)

We then obtain the following Fokker–Planck approximation for the master equation:

∂ f (ξ, t)

∂t
= 1

N

∂2

∂ξ2

((
α2ξ

3 + α4ξ
)

f (ξ, t)
)

+ ∂

∂ξ

([
α2ξ

3 + α4ξ − α1ξ
2 − α3 − 3α2ξ

2

N
+ α1ξ

N

]
f (ξ, t)

)

This is a typical problem where Kramers’ formula can be applied. Since the terms

− 3α2ξ
2

N + α1ξ
N give lower order corrections both to the equilibrium associated to this

problem and to the switching times, we will ignore them in the following:

∂ f (ξ, t)

∂t
= 1

N

∂2

∂ξ2

((
α2ξ

3 + α4ξ
)

f (ξ, t)
)

+ ∂

∂ξ

([
α2ξ

3 + α4ξ − α1ξ
2 − α3

]
f (ξ, t)

)
(13)

Suppose that we choose the coefficients α1, α2, α3, α4 in order to have:

P ′ (ξ1) > 0, P ′ (ξ0) < 0, P ′ (ξ2) > 0,

where P (ξ) = α2ξ
3 + α4ξ − α1ξ

2 − α3.

Then, there exist an invariant measure having two peaks at the positive roots of
the polynomial P (ξ) where P ′ (ξ) > 0. Such positive roots exist for many choices
of the coefficients α1, α2, α3, α4, for instance if α1 is small enough to ensure that
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[
α4ξ − α1ξ

2 − α3
]

has two positive roots and α2 is then chosen sufficiently small.
The equilibrium associated to (13) is given by:

fs (ξ) = CN exp

⎛

⎝−N

ξ∫

0

α2η
3 + α4η − α1η

2 − α3

α2η3 + α4η
dη

⎞

⎠ × 1

α2ξ3 + α4ξ
,

where CN is a normalization constant that is chosen to ensure that
∫ ∞

0 fs (ξ) dξ = 1.
The computation of switching times cannot be made using the the usual Kramers’
formula due to the dependence of the term containing second derivatives in (13) on ξ.
However, similar ideas to the ones in [37] yield easily the following approximation of
the switching times up to exponential orders:

log (τ1→2) ∼ N

ξ0∫

ξ1

α2η
3 + α4η − α1η

2 − α3

α2η3 + α4η
dη

log (τ2→1) ∼ N

ξ2∫

ξ0

α2η
3 + α4η − α1η

2 − α3

α2η3 + α4η
dη

where ξ1 < ξ0 < ξ2 are the three roots of P (ξ) in ξ > 0.Notice that we compute two
different switching times τ1→2, τ2→1, because in general the switching times depend
on the direction in which the transition takes place.

Since the analysis of Kramers’ transitions is well understood both at the formal
and rigorous level (cf. [17,31,32,39,43,44]), and since this case has been studied
repeatedly in the context of chemical systems we will not continue with this study in
this paper.

4 Systems with very long switching times with for macromolecules containing
many similar pieces

In the next two Sections we study some specific bionetworks containing many different
chemical species. In real biochemical networks containing many different elements
there could be complex topological links between the different elements of the system.
We will restrict our study to some simple examples where the chemical reactions are
arranged in some linear chains. Such type of chains have been used often in order
to study how the size of the network can influence the response of the system. A
deterministic linear chain was studied in [35] in order to study how the sensitivity of
the system changes to the chain length. Linear stochastic chains have been considered
in [1–3].

We now describe a simple example of an ideal macromolecule that can produce
very long switching times due to the fact the formation of such a molecule requires
the addition of many similar molecules. The example will be very simple, but we just
wish to emphasize the fact that random fluctuations are able to create some kind of
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directionality in complex molecules and then long time switches between two different
states of a biochemical network, even in the absence of strong interactions between
the different portions of the network. As a matter of fact, the evolution of the states of
the system will take place by means of a random walk with drifting. We will assume
that the reaction rates are of order one, therefore the long switching times will not be
due to the smallness of some of the coefficients, but to the fact that there are a very
long number of intermediate species that must be formed for the switching to take
place.

The system of reactions would be:

X � X A1 � X A2 � · · · � X AN (14)

X � A1 X � A2 X � · · · � AN X (15)

where we indicate by X Ak the combination of a macromolecule X with k molecules
of type A and by Ak X a similar combination of molecules but in a different configura-
tional shape. We assume that the transition between the different molecular structures
can take place only through the sequence of steps (14), (15). Let us write:

Bk = X Ak, B−k = Ak X, k = 0, 1, . . . , N (16)

Notice that by definition B0 = A0 X = X A0 = X . We can then write the system
of chemical reactions (14), (15) as:

It is easier perhaps to write it as:

B−N �
α−

−(N−1)

β−
−(N−1)

· · · �α−
−k

β−
−k

B−k � · · · �α−
0

β−
0

B0 �β+
0

α+
0

· · · �

Bk �β+
k

α+
k

Bk+1 � · · · �β+
N−1

α+
N−1

BN . (17)

where we also include the values of the reaction constants. Notice that we write for

convenience Bk �β+
k

α+
k

Bk+1 instead of:

Bk + A �β+
k

α+
k

Bk+1, k = 0, 1, 2, . . . , N − 1

Bk + A �β−
k

α−
k

Bk−1, k = 0,−1,−2, . . . ,− (N − 1)

Let the number of molecules of Bk be nBk = nk . Let

ξ = (nk)
k=N
k=−N ∈ (N∗)2N+1, nl (ξ) = nl .

We define the following operators acting on (N∗)2N+1 as follows.

T +
l , T

−
l ,S

+
l , T

−
l : (N∗)2N+1 → (N∗)2N+1,
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T +
l (ξ) = T +

l (nk) = (nk + δk,l − δk,l+1), l = 0, . . . , N − 1,

T −
l (ξ) = T −

l (nk) = (nk + δk,−l − δk,−(l+1)), l = 0, . . . , N − 1,

S+
l (ξ) = S+

l (nk) = (nk − δk,l + δk,l+1), l = 0, . . . , N − 1,

S−
l (ξ) = S−

l (nk) = (nk − δk,−l + δk,−(l+1)), l = 0, . . . , N − 1.

Then we note that

T +
l = (

S+
l

)−1
, T −

l = (
S−

l

)−1
.

Let the probability of the phase state ξ at time t be p (ξ, t). Then p satisfies the
following master equation:

∂t p (ξ, t) = −
N−1∑

l=0

[
β+

l nl (ξ)+ α+
l nl+1 (ξ)+ β−

l n−l (ξ)+ α−
l n−(l+1) (ξ)

]
p (ξ, t)

+
N−1∑

l=0

β+
l nl

(
T +

l (ξ)
)

p
(
T +

l (ξ), t
) +

N−1∑

l=0

α+
l nl+1

(
S+

l (ξ)
)

p
(
S+

l (ξ), t
)

+
N−1∑

l=0

β−
l n−l

(
T −

l (ξ)
)

p
(
T −

l (ξ), t
)

+
N−1∑

l=0

α−
l n−(l+1)

(
S−

l (ξ)
)

p
(
S−

l (ξ), t
)
. (18)

We can assume that there is a “drifting term” pointing towards the states
X AN , AN X in the sense that at least in some average sense the probability of the
state closer to these extremes is larger than the probability of the other states.

It is easier to understand the dynamics described by (18) noticing that we can
describe the state of the system Bk as the position of a particle moving in a biased
random walk. The probability of finding the system in the state Bk is given by the
following system of equations:

dp (Bk, t)

dt
= − (

β+
k + α+

k−1

)
p (Bk, t)+ β+

k−1 p (Bk−1, t)+ α+
k p (Bk+1, t) ,

k = 1, 2, . . . , N
dp (B0, t)

dt
= − (

β+
0 + β−

0

)
p (B0, t)+ α+

0 p (B1, t)+ α−
0 p (B−1, t) (19)

dp (Bk, t)

dt
= − (

β−
k + α−

k+1

)
p (Bk, t)+ β−

k+1 p (Bk+1, t)+ α−
k p (Bk−1, t) ,

k = −1,−2, . . . ,−N

where we assume α+
N = α−

N = 0, for simplicity.
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The system (19) that describes the dynamics of (18) is just a biased random walk in
a one-dimensional lattice. The chemical coefficients tend to push the system towards
both extreme points at k = N ,−N .

The steady states of (19) satisfy:

0 = − (
β+

k + α+
k−1

)
p (Bk)+ β+

k−1 p (Bk−1)+ α+
k p (Bk+1) , k = 1, 2, . . . , N

0 = − (
β+

0 + β−
0

)
p (B0)+ α+

0 p (B1)+ α−
0 p (B−1) (20)

0 = − (
β−

k + α−
k+1

)
p (Bk)+ β−

k+1 p (Bk+1)+ α−k p (Bk−1) , k =−1,−2, . . . ,−N

We will assume the following symmetry property for the coefficients in order to
simplify the analysis:

α+
k = α−

−k, k = 0, 1, 2, . . . , (N − 1)

β+
k = β−

−k, k = 0, 1, 2, . . . , (N − 1)

Therefore, the steady state distribution satisfies the following symmetry property:

p (Bk) = p (B−k) , k = 0, 1, 2, . . . , N (21)

The first equation in (20) can be written in a more convenient form:

Jk = Jk−1, k = 1, 2, . . . (N − 1)

where:

Jk = α+
k p (Bk+1)− β+

k p (Bk) , k = 1, 2, . . . (N − 1)

We are interested in computing solutions without probability fluxes. Therefore
Jk = 0. Then:

p (Bk+1) = β+
k

α+
k

p (Bk) , k = 1, 2, . . . (N − 1) (22)

that must be solved using the values of p (B1) . We can compute p (B1) using the
second equation in (20) as well as the symmetry condition (21). Therefore we have

p (B1) = β+
0 + β−

0

α+
0 + α−

0

p (B0) = β+
0

α+
0

p (B0) (23)

We can solve (22) iteratively

p (B−k) = p (Bk) =
[

k−1∏

�=0

(
β+
�

α+
�

)]

p (B0) , k = 2, 3, . . . , N . (24)
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Finally imposing the normalization condition
∑N

k=−N p (Bk) = 1 we obtain

p (B0) = 1

1 + 2

(
β+

0 +β−
0

α+
0 +α−

0

)
+ 2

(
β+

0 +β−
0

α+
0 +α−

0

)
∑N

k=2
∏k−1
�=1

(
β+
�

α+
�

) (25)

Suppose now that we assume:

β+
k

α+
k

≥ θ > 1,
β−

k

α−
k

≥ θ > 1 (26)

or some weaker assumption like:

N−1∏

�=1

(
β+
�

α+
�

)

≥ θN ,

N−1∏

�=1

(
β−
�

α−
�

)

≥ θN , θ > 1 (27)

Any of the assumptions imply the formation of two peaks near the states k = −N
and k = N due to (25). The probability of finding the system near the states BN

and B−N would be much larger than in the regions close to B0. The switching times
between both states would be exponentially large. On the other hand, the state of the
system is “stochastic”, because during most of the time the system is not either at BN

or B−N , but in some of the states nearby. The fluctuations would be of order one, but
due to the large size of the chain connecting the states, it would take a very long time
to make a switching between them.

We now estimate the switching times associated to this system. To this end, a
generalization of Kramers’ formula for systems like (19) must be found. Suppose that
the initial probability distribution is given by

p (Bk, 0) = δk,N

Our goal is to solve (19) with this initial probability distribution and estimate the times
that it takes to have probabilities of order one in the range of values where k ≤ − N

2 . In
order to solve this problem we introduce the following change of variables [cf. (24)]:

p (Bk, t) = ϕ (Bk, t) θk (28)

where:

θ−k = θk =
k−1∏

�=0

(
β+
�

α+
�

)

, k = 1, 2, 3, . . . , N

θ0 = 1
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These formulas imply:

θk+1

θk
= β+

k

α+
k

, k = 1, 2, 3, 4, . . . ,
θk−1

θk
= α+

k−1

β+
k−1

, k = 2, 3, 4, . . . (29)

Then, plugging (28) into (19) and using (29) as well as the symmetry property

θ−k = θk, k = 1, 2, 3, . . .

we obtain after some computations, and assuming the symmetry property

dϕ (Bk, t)

dt
= α+

k−1

[
ϕ (Bk−1, t)− ϕ (Bk, t)

] + β+
k

[
ϕ (Bk+1, t)− ϕ (Bk, t)

]
,

k = 1, 2, 3, . . . , N (30)
dϕ (Bk, t)

dt
= α−

k+1

[
ϕ (Bk+1, t)− ϕ (Bk, t)

] + β−
k

[
ϕ (Bk−1, t)− ϕ (Bk, t)

]
,

k = −1,−2, . . . ,−N (31)
dϕ (B0, t)

dt
= β+

0 [ϕ (B1, t)− ϕ (B0, t)] + β+
0

[
ϕ (B−1, t)− ϕ (B0, t)

]
. (32)

In the derivation of the equation for ϕ (B0, t) we have used the identities θ0
θ1

=
α+

0
β+

0
, θ0
θ−1

= α+
0
β+

0
.

We now derive the analogous of Kramers’ formula for the system (30)–(32). Sup-
pose that (26) or (27) holds. Then, assuming that the differences

[
ϕ(Bk+1, t) − ϕ

(Bk, t)
]

can be approximated by derivatives, we can see that the “convective” effects
in (30)–(32) tend to propagate the values of ϕ from the points k = ±N towards smaller
values of k. Therefore, assuming that the chemical coefficients are of order one, we
expect that in times t of order N , the function ϕ should behave like a constant in
each of the regions {k > 0}, and {k < 0}. More precisely, these approximations can
be expected to be valid for 1 � |k| � N . We will then write the approximations

ϕ (Bk, t) = �+(t), k > 0, 1 � |k| � N (33)

ϕ (Bk, t) = �−(t), k < 0, 1 � |k| � N (34)

On the other hand, we can expect to have approximations to steady solutions of (30)–
(32) for some time scales t of order N (or smaller), in the region where |k| = O(1).
These steady states satisfy

α+
k−1

[
ψ (Bk−1)− ψ (Bk)

] + β+
k

[
ψ (Bk+1)− ψ (Bk)

] = 0, k ≥ 1

α−
k+1

[
ψ (Bk+1)− ψ (Bk)

] + β−
k

[
ψ (Bk−1)− ψ (Bk)

] = 0 , k ≤ −1

α+
0 [ψ (B1)− ψ (B0)] + α−

0

[
ψ (B−1)− ψ (B0)

] = 0
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Two linearly independent solutions of this system are

ψ1 (Bk) = 1 , k = 0,±1,±2, . . .

ψ2 (Bk) =
1 + ∑k−1

�=1
∏�

m=1

(
α+

m−1

β+
m

)

1 + ∑∞
�=1

∏�
m=1

(
α+

m−1

β+
m

) , k ≥ 1,

ψ2 (Bk) = −ψ2 (B−k) , k ≤ −1, ψ2 (B0) = 0 (35)

where we assume that the sequences of chemical coefficients
{
α±

k

}
,

{
β±

k

}
are defined

for arbitrarily large values of |k|. Notice that we have normalized ψ2 in such a way
that

lim|k|→∞ψ2 (Bk) = ±1

Using (33), (34) as matching conditions we obtain the following approximation for
ϕ (Bk, t) for |k| of order one

ϕ (Bk, t) = 1

2

[
(�+ (t)+�−(t)) ψ1 (Bk)+ (�+(t)−�−(t)) ψ2 (Bk)

]
,

k = 0,±1,±2, . . . (36)

The generalization of Kramers’ formula in which we are interested must provide
an equation for the rate of change of the quantities �+(t), �−(t) for time scales
much longer than N . Such a formula will be derived with the following argument,
that essentially generalizes the analogous argument yielding Kramers’ formula for
Fokker–Planck equations. Let us write:

�̄+
k =

k∏

m=1

(
α+

m−1

β+
m

)

, k ≥ 1, �̄+
0 = 1, �̄−

−k = −�̄+
k , k ≤ −1, �̄−

0 = −1 ,

�+
k = ϕ (Bk+1, t)− ϕ (Bk, t) , k ≥ 0 ,

�−
k = ϕ (Bk−1, t)− ϕ (Bk, t) , k ≤ 0.

Then, the equations (30)–(32) can be rewritten as:

dϕ (Bk, t)

dt
= β+

k �
+
k − α+

k−1�
+
k−1, k = 1, 2, 3, . . . , N (37)

dϕ (Bk, t)

dt
= β−

k �
−
k − α−

k+1�
−
k+1, k = −1,−2,−3, . . . ,−N (38)

dϕ (B0, t)

dt
= β+

0

(
�+

0 +�−
0

)
(39)
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dϕ (Bk, t)

dt
= β+

k �̄
+
k

(
�+

k

�̄+
k

− �+
k−1

�̄+
k−1

)

, k = 1, 2, 3, . . . , N (40)

dϕ (Bk, t)

dt
= β−

k �̄
−
k

(
�−

k

�̄−
k

− �−
k+1

�̄−
k+1

)

, k = −1,−2,−3, . . . ,−N (41)

dϕ (B0, t)

dt
= β+

0

(
�+

0 +�−
0

)
(42)

Dividing (40) by β+
k �̄

+
k and adding for all the values of k we obtain

d

dt

(
N∑

k=1

ϕ (Bk, t)

β+
k �̄

+
k

)

=
N∑

k=1

(
�+

k

�̄+
k

− �+
k−1

�̄+
k−1

)

= �+
N

�̄+
N

− �+
0

�̄+
0

= −�
+
0

�̄+
0

(43)

where we use the fact that �+
N = 0 due to the absence of particle fluxes beyond the

maximal particle.
Due to the fact that �̄+

k decreases exponentially as k → ∞ and since ϕ (Bk, t)
approaches a constant for large k, it follows that the main contribution to the sum in
the first term of (43) is due to the terms with k � 1. We can then use the approximation
(33) to obtain

(
N∑

k=1

1

β+
k �̄

+
k

)
d�+(t)

dt
= −�

+
0

�̄+
0

and using the approximation (36) we obtain

d�+(t)
dt

= −
(

N∑

k=1

1

β+
k �̄

+
k

)−1 [
ψ2 (B1)− ψ2 (B0)

2�̄+
0

]

(�+ (t)−�−(t)) . (44)

A similar computation yields:

d�−(t)
dt

= −
( −1∑

k=−N

1

β−
k �̄

−
k

)−1 [
ψ2 (B−1)− ψ2 (B0)

2�̄−
0

]

(�+ (t)−�−(t))

and using the asymmetric and symmetric properties of �̄−
0 , �̄

+
0 , β

+
k andψ2 we obtain

d�−(t)
dt

=
(

N∑

k=1

1

β+
k �̄

+
k

)−1 [
ψ2 (B1)− ψ2 (B0)

2�̄+
0

]

(�+ (t)−�−(t)) . (45)
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Subtracting (44), (45) we obtain

d (�+(t)−�−(t))
dt

=−
(

N∑

k=1

1

β+
k �̄

+
k

)−1 [
ψ2 (B1)− ψ2 (B0)

�̄+
0

]

(�+ (t)−�−(t)) .

Since (ψ2 (B1)− ψ2 (B0)) > 0 we obtain that (�+(t)−�−(t)) approaches zero
for long times. The characteristic time scale is given by

�̄+
0

(ψ2 (B1)− ψ2 (B0))

N∑

k=1

1

β+
k �̄

+
k

= 1

(ψ2 (B1)− ψ2 (B0))

N∑

k=1

k−1∏

l=1

(
β+

l

α+
l

)

.

This number is exponentially large on N due to the growth assumptions in the

quotients
β+

l

α+
l
.

The detailed analysis of the conditions on the chemical coefficients yielding expo-
nential switching times would require a more careful study.

5 Large chemical networks that can produce bistability and long switching
times

The goal is to show that it is possible to obtain large switching times for a system with
a large number of species, having a finite number of molecules of each type of species,
and having coefficients of order one for all the chemical reactions. The goal is to study
the following system of equations. We assume that by means of the attachment of a
given monomer we can have a sequence of nonidentical molecules

B0 � B1 � B2 � · · · � BN (46)

B0 � B1 � B2 � · · · � BN (47)

Then we have

Bk + A �β+
k

α+
k

Bk+1 , k = 1, 2, 3, . . .

B−k + A �β−
k

α−
k

B−(k+1) , k = 1, 2, 3, . . .

We assume that the molecules B−k, Bk produce receptors R− , R+ respectively

Bk →λk Bk + R+, k = 1, 2, 3, . . .

B−k →λk B−k + R−, k = 1, 2, 3, . . .

B−k + R+ →μk B0, k = 1, 2, 3, . . .

Bk + R− →μk B0, k = 1, 2, 3, . . .
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There is also spontaneous degradation

R+ →θ ∅
R− →θ ∅

The transitions (46), (47) could have different meanings. They could be due to the
addition of some monomer a at specific molecular sites, or to a change of molecular
configuration, or any other fact. We will not be concerned with the details of the
process producing the transitions between these different states.

We will assume that there are L elements of this type of system, where L is a
number of order one. The state of each of the elements is basically determined by one
variable Bk that is active (or more precisely by the index k that is active at each time).
The system is dynamic and the variable k is really a stochastic variable changing in
time.

The idea of the analysis is the following. Suppose first that there is no long range
inhibition (therefore that there are no receptors R+, R−). Then, the system is just the
motion of a set of L independent particles in a random walk. We choose the probability
transitions of the random walk to produce bias in specific directions. In particular, we
can assume, as in the random graph indicated above, that the bias is trying to push the
state of the networks close to the points BN and B−N .

The problem is the following. If the L systems are working without any interaction,
and the probabilities of the system moving towards the states BN , B−N are similar,
then the L systems would be more or less evenly distributed among both final states.
This would be the case in the system studied in Sect. 4 and that would yield just L
independent systems.

However, the situation could change in the presence of interactions. The idea is
that a sufficiently strong inhibitory effect should be able to eliminate one of the two
possible peaks. The conjecture is the following. In the absence of inhibitory effects
(or with small interaction) the measure describing the equilibrium equations for the
system above, should be the following. Suppose that, under sufficiently strong drifting,
the equilibrium values for a system with strong tendency to move towards � = 0 are
given by the set of numbers

β� ≥ 0, � = 0, 1, 2, . . .

We need to approximate the invariant measure associated to the system of equations
above using the following formula. In the case of absence of interactions, the invariant
measure can be expected to be obtained by distributing the L particles among the two
peaks. Suppose that the situation is symmetric for the moment. Then, the L mole-
cules are distributed according to a binomial distribution with equal probabilities. The
number of molecules in each side would be N−, N+ respectively, with probabilities

(
L

N+

) (
1

2

)N+ (
1

2

)L−N+
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On the other hand, the distribution among the states k = −N ,− (N − 1) , . . .or k =
N , (N − 1) , (N − 2) , . . . would be obtained by using a multinomial distribution.
Therefore, if the number of particles near k = N is N+ we would obtain a probability
distribution

(N+)!
nN !nN−1! . . .β

nN
0 β

nN−1
1 . . .

and a similar distribution near k = −N . Therefore, in the purely random case (without
inhibitory effects) we can expect the invariant measure to be, as N → ∞

L∑

N+=0

(
L

N+

) (
1

2

)N+ (
1

2

)L−N+ [
(N+)!

nN !nN−1! . . .
(
β

nN
0 β

nN−1
1 . . .

)

+ (L − N+)!
n−N !n−N+1! . . .

(
β

n−N
0 β

n−N+1
1 . . .

)]
(48)

where in each of the sums we have nN +nN−1 +· · · = N+ and n−N +n−N+1 +· · · =
N− respectively.

On the contrary, in the case of strong inhibitory effects, if the inhibition is able to
eliminate completely the other state we would obtain the following invariant measure

1

2

[
(L)!

nN !nN−1! . . .
(
β

nN
0 β

nN−1
1 . . .

) + (L)!
n−N !n−N+1! . . .

(
β

n−N
0 β

n−N+1
1 . . .

)]
(49)

with the constraints nN + nN−1 + · · · = L , n−N + n−N+1 + · · · = L .
We will check numerically that the measures (48), (49) describe the stationary

measure associated to the system under consideration in the absence of inhibitory
effects or in their presence respectively.

Since each of the subsystems is a biased random walk, we describe it using the state
k ∈ {−N , . . . , N } ≡ SN instead of the numbers nl . Let us denote as ηk, k = 1, . . . , L
the state of each of the subsystems. Therefore, the state of the complete system,
including the repressors can be described by means of

ξ = (
η1, . . . , ηL , n+, n−) ∈ (SN )

L × (N∗)2 ≡ E

We then define the transition operators by means of the following

T +
� , T

−
� ,S

+
� ,S

−
� : E → E,

T +
� (ξ) = T +

�

(
η�, n+, n−) = (η� + 1, n+, n−), � = 1, . . . , L

T −
� (ξ) = T −

�

(
η�, n+, n−) = (η� − 1, n+, n−), l = 1, . . . , L

This operators just describe the displacement of the state of each of the subsystems
in a random biased walk.
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On the other hand we introduce additional operators to describe the change in the
number of repressor molecules

U+ : E → E, U− : E → E, V+ : E → E,V− : E → E

U+ (
η�, n+, n−) = (

η�, n+ + 1, n−)
, U− (

η�, n+, n−) = (
η�, n+, n− + 1

)

V+ (
η�, n+, n−) = (

η�, n+ − 1, n−)
, n+ ≥ 1, V− (

η�, n+, n−)

= (
η�, n+, n− − 1

)
, n− ≥ 1

Finally we need one operator to describe the inhibitory effect of the repressers over
some of the molecules

Z+
k,� : E → E, Z−

k,� : E → E, k ∈ SN � {0} , � = 1, . . . , L

Z+
k,�

(
η1, . . . , η�−1, 0, η�+1, . . . , ηL , n+, n−)

= (
η1, . . . , η�−1,−k, η�+1, . . . , ηL , n+ + 1, n−)

Z−
k,�

(
η1, . . . , η�−1, 0, η�+1, . . . , ηL , n+, n−)

= (
η1, . . . , η�−1, k, η�+1, . . . , ηL , n+, n− + 1

)

The evolution of the probability distribution associated to the system (46), (47) is
then given by

∂t p (ξ, t) = −
N∑

�=1

[
A+
� (ξ)+ B+

� (ξ)+ A−
� (ξ)+ B−

� (ξ)
]

p (ξ, t)

−
N∑

�=1

(
�+
� (ξ)+�−

� (ξ)
)

p (ξ, t)

−θ
N∑

�=1

(
n+ + n−)

p (ξ, t)−
N∑

�=1

(
�+

k (ξ) n+ +�−
k (ξ) n−)

p (ξ, t)

+
N∑

�=1

[
A+
�

(
T +
� (ξ)

)
p

(
T +
� (ξ) , t

) + A−
�

(
T −
� (ξ)

)
p

(
T −
� (ξ) , t

)]

+
N∑

�=1

[
B+
�

(
T −
� (ξ)

)
p

(
T −
� (ξ) , t

) + B−
�

(
T +
� (ξ)

)
p

(
T +
� (ξ) , t

)]

+
N∑

�=1

[
�+
�

(
V+ (ξ)

)
p

(
V+ (ξ) , t

) +�−
�

(
V− (ξ)

)
p

(
V− (ξ) , t

)]
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+θ
N∑

�=1

(
n+ + 1

)
p

(
U+ (ξ) , t

) + θ

N∑

�=1

(
n− + 1

)
p

(
U− (ξ) , t

)

+
N∑

�=1

N∑

k=−N

[
�+
�

(
Z+

k,� (ξ)
) (

n+ + 1
)

p
(
Z+

k,� (ξ) , t
)

+�−
k

(
Z−

k,� (ξ)
) (

n− + 1
)

p
(
Z−

k,� (ξ) , t
)]
, (50)

where

A+
� (ξ) = A+

�

(
η�, n+, n−) = α+

k if η� − 1 = k = 0, 1, . . . , N , � = 1, . . . , L

A−
� (ξ) = A−

�

(
η�, n+, n−) = α−

k if η� + 1 = k = 0,−1, . . . ,−N , � = 1, . . . , L

B+
� (ξ) = B+

�

(
η�, n+, n−) = β+

k if η� = k = 0, 1, . . . , N , � = 1, . . . , L

B−
� (ξ) = B−

�

(
η�, n+, n−) = β−

k if η� = k = 0,−1, . . . ,−N , � = 1, . . . , L

�+
� (ξ) = ��

(
η�, n+, n−) = λk if η� = k, k = 0, 1, . . . , N , � = 1, . . . , L

�−
� (ξ) = ��

(
η�, n+, n−) = λk if η� = k, k = 0 ± 1, . . . , N , � = 1, . . . , L

�+
k (ξ) = �+

k

(
η�, n+, n−) = μk if η� = −k, k = 0, 1, . . . , N , � = 1, . . . , L

�−
k (ξ) = �−

k

(
η�, n+, n−) = μk if η� = k, k = 0, 1, . . . , N , � = 1, . . . , L .

The system (50) or its steady states cannot be studied analytically in a simple form,
except in the absence of inhibitory effects (i..e. μk = 0). In such a case the system
(50) admits steady state solutions of the form

p (ξ) =
[

L∏

�=1

ϕ (η�)

]

�+
(
η, n+)

�−
(
η, n−)

,

0 = − [
A+
� (η�)+ B+

� (η�)+ A−
� (η�)+ B−

� (η�)
]
ϕ (η�)

+ [
A+
�

(
T +
� (η�)

)
ϕ

(
T +
� (η�)

) + A−
�

(
T −
� (η�)

)
ϕ

(
T −
� (η�)

)]

+ [
B+
�

(
T −
� (η�)

)
ϕ

(
T −
� (η�)

) + B−
�

(
T +
� (η�)

)
ϕ

(
T +
� (η�)

)]
, (51)

0 = −
[

L∑

�=1

�+
� (η)

]

�+
(
η, n+) − θLn+�+

(
η, n+)
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+
[

L∑

�=1

�+
� (η)

]

�+
(
η,V+ (

n+)) + θL
(
n+ + 1

)
�+

(
η,U+ (

n+))
, (52)

0 = −
[

L∑

�=1

�−
� (η)

]

�−
(
η, n−) − θLn−�

(
η, n−)

(53)

+
[

L∑

�=1

�−
� (η)

]

�−
(
η,V− (

n−)) + θL
(
n− + 1

)
�−

(
η,U− (

n−))
,

where in the different functions T +
� , T −

� , V+
k , V−

k , U+, U− only the variables in
which they depend are written. The solution of (51) can be obtained as in Sect. 4,
and the result is similar to (24), (25), since the state of these molecules is not affected
by the repressers in the noninhibitory case. On the other hand (52), (53) describe the
statistical concentration of repressers n+, n− assuming that each value of η is given.
Their respective solutions are:

�+
(
η, n+) = 1

(n+)!
(∑L

�=1 �
+
� (η)

θL

)n+
exp

(
−

∑L
�=1 �

+
� (η)

θL

)

�−
(
η, n−) = 1

(n−)!
(∑L

�=1 �
−
� (η)

θL

)n−
exp

(
−

∑L
�=1 �

−
� (η)

θL

)

In the case with inhibition (μk �= 0) the steady states cannot be computed analyti-
cally. We have made some numerical simulations of the stochastic process associated
to the system (50). This is made in the next Subsection in the case L = 2. The numer-
ically computed steady states show bistability as it could be expected. The relevant
feature of this bistable behaviour is the fact that the state characterizing the system is
a stochastic variable ranging a wide number of possible states. We do not know if this
type of “diffuse” bistability is possible in real biochemical systems with small number
of molecules, but several possible steady states. However, this mathematical example
shows its feasibility.

6 Numerical simulations

In this section we describe numerical simulations performed for the stochastic process
associated to (50) for L = 2. Since we simulate a continuous process by means of a
sequence of discretized times, some care is required.

The system with L = 2 is described by two numbers k1, k2 ∈ {−N ,− (N −1) , . . . ,
−1, 0, 1, 2, . . . , N−1, N } as well as two numbers n+, n− ∈ {0, 1, 2, . . .} that measure
the number of inhibitory molecules.
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The list of all the reactions is the following

Bk + A �β+
k

α+
k

Bk+1 , k = 1, 2, 3, . . .

B−k + A �β−
k

α−
k

B−(k+1) , k = 1, 2, 3, . . .

Bk →λk Bk + R+, k = 1, 2, 3, . . .

B−k →λk B−k + R−, k = 1, 2, 3, . . .

B−k + R+ →μk B0, k = 1, 2, 3,

Bk + R− →μk B0, k = 1, 2, 3, . . .

R+ →θ ∅
R− →θ ∅

All these reactions are described by means of independent Poisson processes. First,
we will assume for simplicity that β+

k = β−
k = β, α+

k = α−
k = α (i.e., both of them

independent of k). We will also assume that μk = μ, λk = λ are also independent of
k.Moreover, in order to obtain an average drifting effect towards the values k = ±N ,
we will assume, that either β = 2α or β = 3α.

Let us assume that the state of the system is given by

(
k1, k2, n+, n−)

The list of all the possible transition probabilities is as follows

(
k1, k2, n+, n−) → (

k1 + 1, k2, n+, n−)
, β if k1 ≥ 0, k1 < N

(
k1, k2, n+, n−) → (

k1 − 1, k2, n+, n−)
, β if k1 ≤ 0, k1 > −N

(
k1, k2, n+, n−) → (

k1, k2 + 1, n+, n−)
, β if k2 ≥ 0, k2 < N

(
k1, k2, n+, n−) → (

k1, k2 − 1, n+, n−)
, β if k2 ≤ 0, k2 > −N

(
k1, k2, n+, n−) → (

k1 − 1, k2, n+, n−)
, α if k1 > 0, k1 ≤ N

(
k1, k2, n+, n−) → (

k1 + 1, k2, n+, n−)
, α if k1 < 0, k1 ≥ −N

(
k1, k2, n+, n−) → (

k1, k2 − 1, n+, n−)
, α if k2 > 0, k2 ≤ N

(
k1, k2, n+, n−) → (

k1, k2 + 1, n+, n−)
, α if k2 < 0, k2 ≥ −N

(
k1, k2, n+, n−) → (

k1, k2, n+ + 1, n−)
, λ if k1 > 0

(
k1, k2, n+, n−) → (

k1, k2, n+, n− + 1
)
, λ if k1 < 0

(
k1, k2, n+, n−) → (

k1, k2, n+ + 1, n−)
, λ if k2 > 0

(
k1, k2, n+, n−) → (

k1, k2, n+, n− + 1
)
, λ if k2 < 0
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(
k1, k2, n+, n−) → (

k1, k2, n+ − 1, n−)
, θn+

(
k1, k2, n+, n−) → (

k1, k2, n+, n− − 1
)
, θn−

(
k1, k2, n+, n−) → (

0, k2, n+, n− − 1
)
, μn− if k1 > 0

(
k1, k2, n+, n−) → (

0, k2, n+ − 1, n−)
, μn+ if k1 < 0

(
k1, k2, n+, n−) → (

k1, 0, n+, n− − 1
)
, μn− if k2 > 0

(
k1, k2, n+, n−) → (

k1, 0, n+ − 1, n−)
, μn+ if k2 < 0

This is the sequence of transition probabilities. In order to simulate them we need
to transform a continuous process in a sequence of discrete steps. The key point is to
decide which process must be activated in each step of the discrete process. To this
end we use the following idea. Suppose that we have several times t1, t2, t3, . . . , tN

selected by means of Poisson processes with rates ν1, ν2, . . . , νN . The probability of
t1 being the first time selected, i.e. t1 = min {t1, t2, t3, . . . , tN } can be computed as
follows. Since the probability density for these times is

ν1ν2 · · · νN exp (− (ν1t1 + ν2t2 + · · · + νN tN )) (54)

Notice that by integrating the distribution (54) in the set {t1 < t2, t1 < t3, . . .}, it
is easy to see that the probability of the event t1 = min {t1, t2, t3, . . . , tN } is given by

ν1

ν1 + ν2 + · · · + νN

This means that the probabilities must be chosen as follows. Suppose that k1 > 0,
k2 > 0, then just by counting the possible transition probabilities we obtain that the
probability of making the transition

(
k1, k2, n+, n−) → (

k1 + 1, k2, n+, n−)
in the

next step is given by

β

β + β + α + α + λ+ λ+ θn+ + θn− + μn + μn−

All the other transition probabilities can be computed in a similar manner.
This algorithm is essentially the same as the one introduced by Bunker et al. [12]. It

is rather close in spirit to Gillespie’s algorithm, as it was pointed out in [29]. The only
difference is in the fact that this algorithm does not keep track in detail of the times in
which the reactions take place. However, since we are just interested in the stationary
distribution, this is not particularly relevant. Moreover, this algorithm requires less
computational work than Gillespie’s, and for this reason it is more convenient for this
specific problem.

Although the admissible transitions depend on the state it is not difficult to program
it. We used Matlab as the software package. We choose the random reaction activated
in each step using the random number generator of this package.

We have run the algorithm several times with different values of the reaction para-
meters. We run the program during different time steps. An equilibrium distribution
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Fig. 1 Left: μ = 0, middle: μ = 0.75, right: μ = 1, and μ is the intensity of inhibition. We commonly
used 1,000 runs, L = 2, α = 1, β = 2, λ = 1, θ = 1,

is reached typically after 50 time steps (i.e. 50 iterations). For the range of parameters
used in our simulations this is typically sufficient to arrive at a distribution of points
where the relative numbers of points in each given region do not change in a significant
manner with additional time steps. We interpret this as a signal of the arrival of the
system at the invariant measure. We start all the runs assuming that the state of the
system is initially at

(
k1, k2, n+, n−) = (0, 0, 0, 0).

The numerical simulations show that the invariant measure exhibit bistable behav-
iour. Due to the exponential dependence on the probabilities induced by the assumption
(26), a clear bistable behaviour arises with not too large values of N , say N = 10.

Due to the exponential growths induced by the transition probabilities αk, βk , the
bistability can be detected with a number N of order 10 or even smaller.

There is a different behaviour for the systems under consideration if μ �= 0 or
μ = 0.We recall that this parameter measures the strength of the inhibitory effects in
the system. The left Fig. 1 shows the structure of the invariant measure if μ = 0. On
the other hand, Fig. 1, middle and right shows the structure of the invariant measure
for μ = 0.75, and μ = 1, respectively. All the other reaction parameters identical
for the middle and right. We have obtained similar pictures for other values of the
chemical parameters. They show the existence of some kind of bistability for each
of the systems under consideration, but independently of each other. On the contrary
these bistabilities are strongly correlated in the two subsystems if the inhibitory effect
produced by μ is active.

Figures 2 and 3 show how the original distribution of points evolves to a bistable
equilibrium. Some care must be taken with these figures because they do not represent
the actual evolution of an ensemble of systems starting their evolution at the state(
k1, k2, n+, n−) = (0, 0, 0, 0) . This is due to the fact that the algorithm used does

not keep track of the actual time evolution of the states, differently from Gillespie’s
algorithm.

We have found bistable behaviour in Fig. 4, left, middle, and right, for very small
values of μ = 0.001, μ = 0.01, μ = 0.1, respectively. The only relevant difference
is that the time required for the distribution to approach a bistable distribution becomes
larger for smaller values of μ. Therefore, we have not found any evidence of phase
transitions (i.e. changes in the structure of steady distributions) with changing values
of μ. Seemingly very small amounts of inhibitory effects are enough to produce the
bistable behaviour due to the production of inhibitory molecules that destroy the states
of the other subsystem having opposite values of k.
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Fig. 2 1,000 runs, L = 2, α = 1, β = 2, λ = 1, μ = 1, θ = 1
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Fig. 3 100 runs, L = 2, α = 1, β = 2, λ = 1, μ = 1, θ = 1

We also explored some simulations for various β and with α fixed. Since the ratio
of α to β is important for the drifting effect toward the ends, we made only β vary
in the simulations. As it can be seen in Fig. 5, left, middle, and right corresponding
with β = 1.2, β = 1.5, β = 2, the difference in the values of β affects only on the
convergence rate to the invariant measure as expected. Indeed, the bigger the ratio of
β to α, the faster the convergence rate.

We have also done simulations in which the ratio β/α (or α/β) is not chosen as
constant, but as a random distribution equi-distributed in the interval [1.5,2.5] (or
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Fig. 4 Left: μ = 0.001, middle: μ = 0.01, right: μ = 0.1 We used commonly 1,000 runs, L = 2, α = 1,
β = 2, λ = 1, θ = 1 for all the figures
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Fig. 5 Left: β = 1.2, middle: β = 1.5, right: β = 2. We used commonly 200 runs, L = 2, α = 1, λ = 1,
μ = 1, θ = 1 for all the figures
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Fig. 6 Left: α = 1,μ = 1 and β equi-distributed in [1.5, 2.5], middle: β = 2,μ = 1, and α equi-distributed
in [0.5, 1.5] right: α = 1, β = 2, andμ equi-distributed in [0.5, 1.5]. We commonly used 1,000 runs, L = 2,
λ = 1, θ = 1

[0.5/2,1.5/2] respectively). The system has still a tendency to drift to states where
k is close to +N ,−N , but in a less rigid way as in the examples considered above.
Assuming thatμ is equi-distributed in [0.5,1.5] we obtain also bistable behaviour. The
aspect of the resulting invariant measure can be seen in Fig. 6.

7 Concluding remarks

In this paper we have continued the analysis of chemical stochastic systems yielding
bistable behaviour started in [33]. In that paper we analyzed some examples of bio-
chemical networks where the bistable behaviour was due to the existence of chemical
coefficients with very different orders of magnitude. On the contrary, in this paper
we have focused on bistabilities induced by the presence either of many molecules
in the system or many different chemical species. The bistability in the first case can
be studied using classical Kramers’ formula. In the second case new techniques must
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be developed. We have discussed two specific cases of such systems. The first one
can be solved by means of explicit computations. In the second type of model under
consideration, bistability is induced by the presence of inhibitory effects between dif-
ferent parts of the chemical networks. We have checked that such bistability takes
place, even for rather small inhibitory effects. We have considered systems with some
random variation in the chemical coefficients that also tend to move the state of each
subsystem towards two extreme states of each subnetwork.
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